1.
$$c - 13 = 54$$
 for $c = 67$
 $c - 13 = 54$
 $67 - 13 \stackrel{?}{=} 54$
 $54 \stackrel{?}{=} 54$

Yes; since 54 = 54, 67 is a solution to c - 13 = 54.

2.
$$5r = 65$$
 for $r = 15$
 $5 \cdot 15 \stackrel{?}{=} 65$
 $75 \neq 65$

No, 15 is not a solution.

3.
$$48 \div x = 6$$
 for $x = 8$
 $48 \div 8 \stackrel{?}{=} 6$
 $6 = 6$

Yes, 8 is a solution.

4. Since there are 4 quarters in a dollar, the equation to check is
$$3q = d$$
 where $q = 4$ and $d = 12$ $3 \times 4 \stackrel{?}{=} 12$ $12 \stackrel{?}{=} 12$

Since
$$12 = 12$$
, 12 quarters is equal to \$3.

5.
$$p + 51 = 76$$

 $\frac{-51}{p} = \frac{-51}{25}$

6.
$$107 = 19 + j$$

 $\frac{-19}{88} = \frac{-19}{j}$
 $j = 88$

7.
$$45 = s + 27$$

 -27 -27
 $18 = s$
 $s = 18$

8. Let w represent the length of the section of the Great Wall that is now in ruins.

$$\begin{array}{r}
 6,350 + w = & 6,850 \\
 -6,350 & -6,350 \\
 \hline
 w = & 500 \text{ km}
 \end{array}$$

9.
$$k-5 = 17$$

$$\frac{+5}{k} = \frac{+5}{22}$$

10.
$$150 = p - 30$$

 $\frac{+30}{180} = \frac{+30}{p}$
 $p = 180$

11.
$$n - 24 = 72$$

$$\frac{+24}{n} = \frac{+24}{96}$$

12. Let k represent the height of Kingda Ka.

$$k - 420 = 36$$

 $+420$
 $k = 456$
 $k = 456$ feet

13.
$$6f = 18$$

 $\frac{6f}{6} = \frac{18}{6}$
 $f = 3$

14.
$$105 = 5d$$

$$\frac{105}{5} = \frac{5d}{5}$$

$$21 = d$$

$$d = 21$$

16. Let g represent how much Taryn pays per glass.

$$8g = 48$$
 $\frac{8g}{8} = \frac{48}{8}$
 $g = 6$
 $g = 6

17.
$$10 = \frac{j}{9}$$

 $10 \cdot 9 = \frac{j}{9} \cdot 9$
 $90 = j$

18.
$$5 = \frac{t}{6}$$

 $5 \cdot 6 = \frac{t}{6} \cdot 6$
 $30 = t$

19.
$$\frac{r}{15} = 3$$

 $\frac{r}{15} \cdot 15 = 3 \cdot 15$
 $r = 45$

Solutions: Chapter 2 Introduction to Algebra Ready to Go On?;

20. $\frac{\text{pounds of peaches}}{2} = \text{number of pies}$

Let p represent the pound of peaches needed.

$$\frac{p}{2}=6$$

$$\frac{p}{2} \cdot 2 = 6 \cdot 2$$
$$p = 12$$

$$p = 12$$